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Strongly chaotic systems (e.g., piecewise expanding mappings) exhibit diffusion- 
like behavior in the sense of central limit theorems. To find more precise 
statements about the similarity to probabilistic diffusion, we study how the 
evolution of probability densities under d-dimensional piecewise expanding 
mappings can be modeled by Markov processes with smooth transition proba- 
bilities (such as diffusion processes). Our results can be viewed as a special type 
of local limit theorem. 
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1. I N T R O D U C T I O N  

Diffusion generated by deterministic chaos has been studied both numeri- 
cally and with the help of r igorous mathemat ics  (cf. refs. 10 and 17 and the 
references cited therein). We investigate a class of discrete-t ime dynamical  
systems which are periodic extensions of piecewise expanding maps. These 
systems can be writ ten 

X,,+t = X , , +  f ( X , , ,  y , , ) ;  (1) 

Y,,+ 1 g(X, , ,  y,,) J 

where X,  ~ I~ a and where y,, takes values from the e-dimensional  torus ~ "  
(which, as a set, will be identified with the cube [0, 1)" in the usual way). 
We assume the functions f and g to be integer- (i.e., ~a_) per iodic  with 
respect to X,,. (Fur ther  assumpt ions  on f and g will be in t roduced in the 

following.) 
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X,, is regarded as an "observable"; its behavior is to be modeled by 
some diffusing probabilistic system. The value of y,,, the other variable, is 
not registered, however. One can think of a microscopic, internal, or 
"hidden" quantity, like the angle variables in ref. 1. The case e = 0, i.e., that 
none of the variables is hidden, is included. 

We look for simple probabilistic systems which approximate the 
behavior of X,, as n--, oo in the following way: Let Po be a probability 
density (15) for Xo, and fix a probability distribution for Yo. Then, without 
further knowledge of the system, X,, becomes a random variable. Assume 
it possesses a probability density pal. (We employ the superscript d as an 
abbreviation for "deterministic.") Now look at some stochastic process in 
R d. Starting from the same initial density /9 o, it evolves in time n to a 
density p,, (assuming existence). Our aim is to find a stationary Markov 
process with the following property: Regardless of Po (up to smoothness 
assumptions) the natural "distance" 

l ip,, - p,, l l  L'(R~) : =  . d a X  I p ;~ (X )  - -  p , , ( X ) l  

of the densities decays like n-7' as n ~ oo, with ~ as large as possible. This 
criterion means that the sought-for stochastic process matches the long- 
time behavior of X,, on both microscopic ( ~  1) and macroscopic (.--x/~) 
scales. We will find that in the general case the decay of [[p,d p,,ll L,(~,,, is 
faster than n -~' for all y < I/2 (for suitable random models). A decay faster 
than n-1/2 is not possible in general (for Markov models with sufficiently 
smooth transition functions). 

This probabilistic approximation is of global and local type. Most 
known results, however, are exclusively concerned with the behavior in the 
large. Especially the two well-known diffusionlike properties the central 
limit theorem and the functional central limit theorem, are statements 
about the scaled-down variable X,, , /x /~,  n ~ oo. Only refs. 11 and 18 also 
discuss local properties in this context, namely the local limit theorem and 
the renewal theorem. 

To cast the system (1) into a more convenient form, split X,, into a 
macroscopic and a microscopic part: X,, = Lx,,J + <x,,>, where each entry 
of LX,,J is the largest integer smaller than or equal to the corresponding 
entry of X,,. The second member, <X,,>, is the fractional part in [0, 1 )d_ •--d 
of X,,. Let us denote <X,> by x,,. There is a unique mapping T from 
( x , , , y , )  to (x,,+ l, y,,+ ,). Therefore the integer vector Lx,,+,J-LX,,J 
can be written as a function of x,, and y,, only. Let us call this function 
k(x, , ,  y,,), so that 

N - - I  

Xu=xu+LXoJ+ Y~ k(x.,y,,) (2) 
n = O  
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Thus Eq. (1) yields an "observable" X,, which is driven by the (x,,,y,,) 
motion. We can expect X,, to be diffusive if the system given by the map- 
ping T on the phase space ~-dX ~-" is chaotic, because k(x,,, y,,) can then 
be regarded as a "random" increment. 

In this work we consider the case that T is a (d+e)-dimensional 
piecewise expanding map. (The case of T being an Anosov diffeomorphism 
will be treated in a later paper.) 

As will be shown, on rather general conditions there exists a unique 
measure dp which is invariant under T and absolutely continuous with 
respect to Lebesgue measure d2 = ddx dey. If we want the system to exhibit 
diffusive motion, we have to ensure that the variable At,, typically leaves 
every bounded set. To this end, assume that for all N = (N~ ..... Nd) ~ ~d  the 
restricted system 

X , , + t = X , , + f ( X . ,  y,,) ( m o d N ) ]  
(3) 

y,, + t=  g(X,,, y,,) 

is weakly mixing with respect to the invariant measure which can be 
constructed by periodic extension of the measure d#. This assumption will 
allow a reasoning as in refs. 7 and 14 to show that the effective diffusion 
tensor is nondegenerate. 

As a toy example consider the system given by the mapping 

x,,+l =x,,+ <x,,) (4) 

of l~ into itself. This can be treated within the above framework (d=  1, 
e = 0 )  by rewriting it as follows: 

x,,+l = (2x, ,)  N-I  } 

x u  = x u  + LX0J + Z k(x, ,)  
n=O 

where k ( x ) : =  L2xJ. The natural choice for dp is Lebesgue measure d2 
itself. For all N e N 

X,,+I~-Xn-~-(Xn) (mod N)  

is weakly mixing with respect to Lebesgue measure. 161 (Note that this 
reduced system, loo, is a one-dimensional piecewise expanding map.) 

Plan  o f  This  Pape r .  First, we give a definition of "functions of 
bounded variation" and recall the theorem of Ionescu-Tulcea and 
Marinescu. With the help of these tools we analyze multidimensional 
piecewize expanding mappings; as an extension to the work of M. L. Blank, 
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we find both exponential decay of correlations and the central limit 
theorem for the large class of functions of bounded variation. The 
asymptotic behavior of probability densities under piecewise expanding 
mappings is estimated. A concluding analysis of the behavior of probability 
densities under Markov processes leads to the final result. 

2. TOOLS 

2.1. Generalized Variat ion 

The function k which appears in the fundamental equation (2) is, by 
construction, 7/d-valued and hence either trivial or discontinuous. Clearly, 
it must not be too singular. In the one-dimensional case where d =  1 and 
e = 0 ,  it is possible t~8~ to assume that k is a function of bounded variation 
(in the well-known usual sense). 

For treating the multidimensional case the usual, one-dimensional 
notion of bounded variation has to be generalized; this can be done in a 
number of ways. The following definition is closely related to the ones 
given by Blank 131 and Kellerlt3~: Denote by d the distance on ~--dx#-e. 
For ct, fl~(0, 1) consider the set BV~,t~ consisting of the complex-valued 
L~(d2)-functions 2 f with finite variation 

var,./~(f) := inf sup t -~ I d2(z) sup I)7(zl)-AT(zz) [ 
.~ 0 < t < / : /  Cli2:d(z. Cl/2)<t 

where the infimum runs over all functions f which equal f almost 
everywhere with respect to d2. (In the following this will be abbreviated 
"d2-a.e.") Equip BV,.t~ with the norm Ilfll=.a :=  Ilfll~ + var,.#(f).  

The following theorem gives a useful criterion for a function to be an 
element of BV~.a; besides, it shows that these functions can be quite 
irregular and that ct plays the role of a H61der exponent. 

Theorem 1. For some bounded function f assume that there is a 
number C < oo and a subset D which cuts ~--a x 5"" into a countable union 
1.3~ Ai=~--ax ~ - " - D  of disjoint open sets Ai such that the restriction o f f  
to each of these sets A~ fulfills a H61der condition 

I f ( z , ) - f ( z 2 ) l< . C d( z , , z 2 )  ~ for all _71,7.2~A i 

2 Funct ion  classes modu lo  equal i ty  d2 a lmost  everywhere, of course. In the following, the 

Lebesgue spaces L p and their norms I111 p refer to the measure d2 if not  indicated otherwise. 
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Assume furthermore that the upper capacity 3 C of D is smaller than 
d +  e - ~ .  (This is the case, e.g., if D is the union of a finite number of 
smooth hypersurfaces.) Then f ~  BV,.a for fl small enough. 

We list several important  properties of BV,,a: 

1. For  a l l f ~  B V~.p and all Lipshitz continuous functions ~b on C also 
~bof is an element of BV=.t~ with var~.p(~of)~< Lip(~b)var=,p(f). 

2. There exists C <  oo such that llfl[oo <~ C Ilfft~.p for a l l f ~  BV=.~. 

3. var~.a(fg) ~< var=,a(f)Ilgll o~ + var=.p(g)Ilfll ~ for all f ,  g ~ BV~.tv 

Of technical use is that BV~.p with its above-defined norm is a Banach 
space. Its closed unit ball is compact  as a subset of L ~. 

2.2. The Theorem of Ionescu-Tulcea and Mar inescu 

Keystone to the study of chaotic systems by operator  techniques is the 
following theorem, t~6~ which we present in a form specialized for our  
application: 

T h e o r e m  2 (Ionescu-Tulcea and Marinescu, special case). Fix ~, 
fl E (0, 1). Let P be a bounded operator  in BV~.p which can be extended to 
a bounded operator  in L ~. Suppose that: 

1. P is contracting with respect to L ~. 

2. There exist r~ e (0, 1 ), r 2 e R~-, and m e • such that 

var~,p(P')<~rl var~.p(f)+r2 Ilflll for all f ~ L ,  ~ (5) 

Then, P" can for all n e I~1 be decomposed as P" = Z~ 7"H~ + R", where the 
sum runs over all eigenvalues 7 of P which are of modulus 1 and belong 
to eigenvectors in BV~.a. There are only finitely many such eigenvalues, 
so that the sum is well defined. The operators H~ are BV~,lrprojectors 
onto the corresponding eigenspaces. R maps BV~,a into itself, and its 
BV~,a-spectral radius is strictly smaller than 1. Furthermore,  ll~,H6 = 0 and 
FI;,R = 0 = RH~, for all 7 :~ 6 which occur as eigenvalues of modulus 1. 

We need also a form of this theorem with weakened assumptions: 

Recall that the upper capacity C of a set D is given by lim sup,10(log I/t)- ~ log N(t), where 
N(t) is the number of t-balls needed to cover D. 
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T h e o r e m  3. In the situation of Theorem 2 suppose instead: 

1. sup,,r ~o IIP"ll :~ < oo. 

2. There exist r ,~ (0 ,  1) and r,_r such that 

var,.,(Pf)<~r, var , . t~( f )+r  2 Ilf[l~_ forall f e ~  (6) 

Then the BV,.lrspectral radius of P is equal to or smaller than 1. It equals 
1 if and only if there exists an eigenvector in BV~.p with eigenvalue of 
modulus 1. 

When applying these theorems, the following lemma is useful: 

L e m m a  4. Let K c  R d be a compact set. Assume A: p ~-* .4/, maps K 
continuously (with respect to operator norm) to the bounded operators in 
some Banach space with norm I]-[I- If the spectral radius of all A v, p �9 K, 
is strictly smaller than 1, then there exist C < ~ and • ~ (0, 1) such that 
1[.4~,[I ~< CK" for all p 6 K and all n e N. 

3. PIECEWlSE EXPANDING M A P P I N G S  

3.1. Basic Properties 

For the notion "T  is piecewise expanding" we employ a quite broad 
definition: There is a finite partition of y-d+e into Borel sets Ai such that: 

1. On each Ai, the mapping T is the restriction TilA, of some 
C~-diffeomorphism T~ defined in an open neighborhood Bi of Ai; 
the Jacobi determinant of T~ is bounded from above by some 
C <  oo, and the inverse of the Jacobi determinant is H61der 
continuous with growth constant c and exponent ~t e (0, 1). 

2. There exists a common 7 > 1  such that every T~:B~-*T~(Bi) 
expands distances by at least a factor 7- 

The Perron-Frobenius operator P describes the evolution of 
probability densities under the action of T. It is defined by 

f d 2 g P ( f )  L_ f d 2 ( g o T ) f  for all f E L  ~ and g ~ L  ~ (7) 

It preserves the integral ~ d2 and is L'-contracting. Note that 

P(f)(z)  = ~ 1 rA,(z)Ji(z) f o TTl(z) 
i 

(8) 
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where IrA, is the indicator function of the set TAs and Js(z):= 
Idet( O TT ~ )(z )l . 

In order to apply the theorem of Ionescu-Tulcea and Marinescu to P 
we use the following theorem. It is inspired by the work of Blank, ~3~ 
but covers a more general class of piecewise expanding maps, e.g., the 
boundaries of the sets As may be very singular in comparison. 

Theorem 5. If fl is small enough and if the upper capacities of the 
sets UiOAi and U~STAs are strictly smaller than d + e - c t ,  then for all 
.re BV~, B we have 

var=,l~(Pf) <~ 7 -~A vaG,/~(f) + B Ilfll i (9) 

where A, B < ~  only depend on e, fl, c, C, and the shape of the As. 

The proof  of this theorem is given in the appendix. 
If the Jacobi determinants of each Ti do not oscillate too much, then 

c is small; if in addition the boundaries of the As and TA~ are piecewise 
smooth, then the expressions on the r.h.s, of Eqs. (26) and (27) (see 
appendix) can be made arbitrarily small by choosing fl small. So it is not 
difficult to see that for a large class of piecewise expanding maps T one has 
indeed ~, ~A < 1 in Eq. (9) for a certain choice of cc and ft. We are going 
to assume this property of T in the following. 4 Then Eq. (9) immediately 
yields condition 2 for Theorem 2. 

Therefore, for all n el~l the nth power of the Perron-Frobenius  
operator  in BV~.~ can be decomposed as 

P":= ~ , " H ; . + R "  (I0) 
, /  

where the sum runs over all eigenvalues y of modulus 1. H;. is a projector 
of BV,.t~ onto the corresponding eigenspace, and the BV,.a-spectral radius 
of R is strictly smaller than 1. 

From property 2 and Eq. (9) one can deduce by iteration that 
IIP"(1)[I2 is bounded by some C <  m for all n S N o .  From this and from 
Eq. (10) follows the existence of at least one h ~ BV~,t~ with h > 0, ]" d2 h = !, 
and Ph = h. 

Now, dp : =  h d2 defines an invariant measure for the mapping T. We 

If the expansion rate 1' is too low to fulfill ),-~A < 1, one can consider some power T" of 
the mapping (and hence pm instead of P), so that ), is replaced by ),". However, A may 
increase, depending on the geometry of the A i. (Ref. 5 gives some interesting examples of this 
problem.) In the one-dimensional case, however, the recipe of taking an appropriate power 
of T always leads to successJ Is~ 
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have assumed (cf. the introduction) that T is weakly mixing with respect to 
this measure. Therefore, h is the only eigenvector of P with an eigenvalue 
of modulus 1 in BV,,.t~ and even in the larger space L ~. So Eq. (10) reduces 
to 

P":=H+R""  for all n ~ N  (11) 

where /7 is the one-dimensional projector which maps every function f to 
hla,  f 

We assume in the following that each coordinate function of k lies in 
the space BV,.a with a and fl as above. [To achieve that, ~ e (0, 1) and 
fie(0,  1) may be lowered at the very beginning, as long as y -=A <  1.] 
From here on we will fix these c~, fl and suppress them mostly. 

Exponential Decay of Correlations. Equation (11 ) immediately 
leads to an exponential decay of correlations for the large class of 
observables given by BV-functions: Take functions f ~ L~ and g ~ BV with 

d/~ f = 0. Then 

f d# (fo T")g-- f  d2 fh f d2 gh + f (t2 fR"(gh) 

The first term on the r.h.s, vanishes, because S d2fh =~ d/tf=O. The 
second term on the r.h.s, tends to 0 exponentially fast as n--* 0% because 
gh ~ BV and because the BV-spectral radius of R is strictly smaller than 1. 

3.2. The Characteristic Function of X N 

We want to examine the behavior of XN given the initial probability 
density po(X)v(<X>, y) of (Xo, Yo). Here, P0 is an arbitrary probability 
density of class C~. The function v is held fixed; it is assumed to be of type 
C I and to be a probability density with respect to y for fixed x, i.e., 
Sd"yv(x, y ) =  1 for all x e ~  -d. 

All information we need is encoded in the characteristic function of X u 
for all p e  R a. It can be calculated with the help of Eq. (2): 

Epo[exp(ip . XN) ] 

(expip'l) f d2(x, Y) 
l e Z  a [ N--' ] 
xexp ip.x(rS(x,y))+ip.  ~, k(T"(x, y)) po(x+l)v(x,y) 

n = O  

where, by abuse of notation, x(-) denotes the x coordinate e [0, l)d of a 
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point in ff-'-d X ~-'-e. Note that the sum over I is actually only finite. With the 
help of the Perron-Frobenius operator P define Pp(f) := P(eiP~f) for all 
.fE L ' .  Because k is a ?'/a-valued function, Pp is 2rt77a-periodic with respect 
to p. By N-fold application of Eq. (7) we find r 

EpoEeip. x,,.-] = ~ e ip . , I  d). et;O'eN(po./U } (12) 
/~ z a 

where Po.l(x):= po(x+l). To estimate the behavior of this expression as 
N--+ oo, we derive a decomposition of P~, similar to the decomposition (1 1 ) 
of the Perron-Frobenius operator. (The same idea is exploited in refs. 1 1 
and 18.) 

First, note that for k ~ BV the operator Pp in BV is bounded (proper- 
ties 1 and 3 of BV). Even more, the spectral structure of Pp in the space 
BV is very similar to that of P itself: The spectral radius is equal to or less 
than 1; if it equals 1, then there exists an eigenfunction in BV with an 
eigenvalue of modulus 1. This is a consequence of Theorem 3 applied to Pp. 
l-Note that Eq. (6) is a consequence of property 3 applied to the product 
eiP .kf] 

Let us examine for which p there exists a BV-eigenfunction with eigen- 
value of modulus 1 (which by the preceding argument is equivalent to the 
statement that Pr has a BV-spectral radius of 1): Let Pp possess an eigen- 
function f i n  L ~- with eigenvalue of modulus 1, so that P(eO"kf)= d~ 
some 0 ~ •. The Perron-Frobenius operator P has the property that d2-a.e. 
e ( I f l )  >1 IP(f)l-  Therefore d2-a.e. P ( I f l )  t> [fl for the eigenfunction f On 
the other hand, P is an L~-contractive operator. So d2-a.e. P ( I f l )  = Ifl. But 
the 1-eigenspace of P in L ~- is one-dimensional; therefore (perhaps after 
normalization) d2-a.e, f =  e~h for some real-valued function ~b. Combining 
the eigenvalue equation with the definition (7) of the Perron-Frobenius 
operator P we obtain 

Id2goTeirtCeir gei~ for all g~L ~ 

We can choose g : = e  *~ so that SdIaexpi(p.k--O--(aoT+O)=l, 
and hence 

p.k-O-(~oT+qb d/a-a.e, is an element of 2n77 (13) 

This result can be turned into an equivalence: If we are given p, 0, and ~b 
fulfilling (1 3), then obviously ei~h is a L<-eigenfunction with eigenvalue e i~ 
Then there also exists an eigenfunction of Pp with eigenvalue of modulus 
I which belongs not only to L ~ but also to BV. (Use Theorem 3 and the 
denseness of BV in LJ.) 

822/75/1-2-13 
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Call 6~ the set of all q~ ~d for which the BV-spectral radius of P2~q is 
equal to 1. Obviously 5 a ~ 7/d, and 6 e is invariant under integer transla- 
tions. Condition (13) shows that with every finite set { q i } c ~  also 
{m-4-~-~i niqi: m, n i t  2 e } is a subset of 6C We proceed in two steps to prove 
that indeed 5 e = 7Jd: 

L e m m a  6. If 6~ contains a vector with some irrational entry, then 
5c has a limit point in Q d _  7/d. 

ProoL Let q be an element of 6 c. It is sufficient to show: If some 
entry of q is irrational, then the subset { <nq>: n ~ 2z } of ~--d has a nonzero 
rational limit point. This can be proved by considering the well-known 
dynamical system on the torus ~--d which is defined by iterating the 
mapping x~--* < x + q > .  �9 

Lemma 7. The BV-spectral radius of P2nq n e v e r  equals 1 for 
q ~ Qd-- 2v a. 

Proof. Consider 0 # q =  (m,/Ni ..... ma/Na), where rare {0 ..... N r -  1 }, 
Nr E ~, 1 <<. r <~ d, and at least one of the mr does not vanish. It is sufficient 
to show that for all such q there does not exist an eigenvector of P2nq 
with spectral radius of modulus 1. We have assumed that for all N =  
(N~ ..... Nr)~ H a the system (3) has the periodic extension dPN of dp as a 
weakly mixing measure. A calculation of the Perron-Frobenius operator 
PN of this enlarged system reveals: If P2nq had an eigenfunction f to an 
eigenvalue of modulus 1, then (X, y) ~ exp( -2~ziq. [ X I ) f (  (X>, y) would 
be an eigenfunction of PN with the same eigenvalue. But due to the 
assumed weak mixing, this would imply 

r=' Nr j f ( < X > ,  y) 

= c o n s t . h ( < X > , y )  for d/~N-almostall(X,y) 

This cannot be true, because the exponential factor is not invariant with 
respect to integer translations in X. �9 

If 6 ~' was different from 7/a, then by Lemma 6 it would possess an 
element of ( • a  7/a) either as an element or as a limit point. But such a 
limit point has to be a point of 6 c itself, because 5 a is a closed set: The 
mapping p~--~ Pp is BV-analytic and therefore the spectral radius of Pp is 
semicontinuous from above with respect to p (cf. Theorems IV.2.23a and 
IV.3.1 of ref. 12). So in any case 6 e would contain an element of ( Q a  zd), 
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which is forbidden by Lemma 7. In conclusion, 6p cannot be different 
from 2n77 d. 

For small Ipl, one can view Pp as an analytic perturbation of P: Along 
the lines of ref. 18 or, more generally, by ref. 12 one can show that there is 
an e > 0 such that for all p, [Pl ~< e, we have a decomposition analogous to 
Eq. (11): 

n t l  n P p . k = K p H p + R p  for all h e n  (14) 

where Kp is the eigenvalue with the largest modulus, /-/p a one-dimensional 
BV-projector,  Rp a bounded operator, all three of them analytic with 
respect to p. The BV-spectral radius of all Rp is strictly smaller than 1, and 
lip assumes the value 1 for p = 0 ;  for all other p, IPl ~<e, its modulus is 
strictly less than 1. For p = 0  the decomposition according to Eq. (14) 
corresponds to that of Eq. (11 ): 17 0 = 17 and Ro = R. 

Central Limit Theorem. With B : =  ~ dp k, the random variable 
( X N - B N ) / , , / ~  converges to a nondegenerate Gaussian distribution. 
This follow if we prove that for every p ~ R  d the expectation 
E p o [ e x p ( i p . ( X N - B N ) / x / ~ )  ] converges to e x p ( - p . D p / 2 ) ,  where D is a 
strictly positive real symmetric matrix. To see this, fix an arbitrary p e ~a 

N and choose M so large that for all N~> M Eq. (14) can be applied to Pp/.f-~. 
Then we have 

E,oEexp(ip . (XN - BN)/v/-N) ] 

-- f exp ,p. 

• (Kp/ , / - ; I I~/ , ,  u + Rp/ , /W)  �9 I / v / -N)  po.,V 

Because we have assumed p e C~, the expression Z / ,  zaexp(ip, l /x /~)po. ,v  
is an element of BV, whose BV-norm is bounded by some Cj for all N>~ M. 
Now apply l emma4  to Rp/,/-~, N>~M. Thus, there exist C z > 0  and 
~<e(0, 1) such that II Rp/x/~I[N BV ~ C 2 K  N. So it remains to show that for 
N-~ ~ ,  N/> M, we have 

exp( - p . Dp/2 ) - K~/ ,F exp( - ip . B x//-N ) --* 0 (15) 

with B as above and some appropriate strictly positive real symmetric 
matrix D. 

We know Ko = 1, [Kpl ~< 1, and Kp = K_p, so that it is a simple matter 
to deduce K p = e x p [ i p . B - p . D p / 2 + i E ( p ) + F ( p ) ] ,  where D is a non- 
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negative real symmetric matrix, and where E, F are real-valued C~-func - 
tions whose values and first two, respectively three derivatives vanish at 
p = 0 .  Thus, D in Eq. (15) is known and the convergence is obvious. 

The only point left to verify is that D is s t r i c t l y  positive. Assume the con- 
trary, namely that there exists a nonzero vector v ~ R d such that v �9 D v  = O. 

Then the variance of  the random variable v -Z , ,=o  (ko - 
with respect to d# would tend to 0 as N ~  ~ .  Now define u : =  
Z,~=~ P " [ v . ( k - B ) ] ,  which converges exponentially in B V ,  because 
l l ( v .  ( k  - B ) )  =0 .  Clearly, u - P u  = P [ v .  (k  - B)]. Also the variance of 

N - I  

n ~ O  

[v. ( k -  8) + T-Io 

will tend to 0 as N---, ~ .  Since we have proved the (even exponential) decay 
of correlations, we can apply the G r e e n - K u b o  formula for the (vanishing) 
diffusion constant of this stochastic process: 

O =  I d p [ v . ( k -  B ) +  u - u o  T ] 2  

+2 L Idl~E(v'(k-B)+u-u~176 +u-u~ 
t i m  1 

But every member of the sum on the lower line vanishes, because 

P " [  v . (k  - B )  + u - u o T ]  = P " [  v . ( k  - B)]  - P"  - J(u - P u  ) = 0 

by the construction of u. Therefore, also the integral on the upper line 
vanishes, so that dp-a.e,  v- k - v- B + u - u o T = 0. But then according to the 
eigenvalue criterion (13), P,, has an eigenvalue of modulus 1. Obviously this 
property remains true if we replace v by some multiple of itself. So we find 
that the set 5 ~ : =  {q: P2nq has an eigenvalue of modulus 1 } contains the 
entire line Rv. This is a contradiction to the known identity ~ = 7/d. 

3.3. The Probability Density of  X N 

After n iterations of Eq. (1), the initial density Po is transformed into a 
density p;~ of X , .  We want to model the evolution of this density by some 
other sequence of densities p,, [ from L 2 ( d d X ) c ~  L I ( d d X ) ,  to be precise]. 
Apply Eq. (12) to calculate the characteristic function of X,,; the Four ier -  
Pancherel theorem gives equality and existence for 
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d d 2 (2x) liP,,- P.II L~(a~x~ 

�9 = ( 2 x ) a f  daX Ip,a,(X)-p,,(X)l 2 
JR d 

= f. dap lEpore'pX"]- f daxei"Xp,,(X)] 2 

_ ~. eiPlP,,(x+l) 2 
I ~  E a 

Now choose 8~(0, x) so small that we can apply Eq. (14) for IPl ~<~. 
One can split the integration domain ofp  into the two sets {p: Ipl ~<a} and 
{pC I--g, X']a: [Pl >~}. The known statements about the spectral radii of 
Rp and Pp then allow us to apply Lemma 4 in order to find 

d d 2 (2x) IlP,,- P,,llL'-,a~x~ 

<<.2 f,p, <.~. dap !~-, dax [!~-.. d"y K~,H e (,~,a e~176 

_ ~. e~ l) 2 
l e  Z ,l 

1) 2 
+2fp d*Y~rday ~ e'P"p,,(x+ +C~c" (16) 

e [ - n .  + n ]a ,  lp l  > e / a 

for all n ~ N  o, where C < ~  and ~ ( 0 ,  1) are constants which do not 
depend on n. 

Assume we are given a Markov process (whose actual construction will 
be postponed until Section 4.2) with densities p, such that 

(exp ip.l) p,,(x + l) 
l e  Z a 

= exp{n[ip. B -  p. Dp/2 + iE'(p) + F ' (p) ]  } 

,oxp/, x, 

for Ipl ~< e, where 

f ddx [A(n, p, x)[ 2 s u p  
ipl~<~ J3ra 
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decreases exponentially as n --+ oo, and where the operator-valued function 
H '  has the property that 

!:ada~c I H'p(f)(x) - ~ d"y Hp(fv)(x, y)2<< lpl C�91 ,[fvll=.a 

with some C~ < oo for jp[ ~<~ and f(x, y) v(x, y)=f(x)  v(x, y)eBV. The 
functions E',  F '  are real-valued, of type C ~-, and their value and first two, 
respectively three derivatives vanish at p = 0. Furthermore assume that 

sup ~ eiptp,,(.+ l) L'-~aax~ 
p ~ [ - n , n ] ' l ,  lPl>c IEZ a 

decays exponentially as n--+oo. Then we find from Eq.(16)  that 
lip,d, - P,,[I C'~daX) decays like n -  1/2-a/~ or faster as n --+ oo. 

This can be shown as follows: The r.h.s, of the preceding estimate (16) 
d 2 for liP,,-P,,II L'-~daX~ can be estimated by the sum of an expression which 

decays exponentially as n --+ oo plus the expression 

4n -a/~ J"lql <~ ,~nn daq e x p l - - q .  Dq + 2nF'(q/x/~ ) ] [~. dUx 

x{IlI'q/..~(t~z, exp(iq'l/~)Po.,  ) 

-f: , .d~yHq/.j~,(,~ exp(iql/x//-n)po.,V)] 2 

+ I I - exp { n [ iE(q/x//-n ) + F(q/x//-n ) - iE'(q/w/-n ) - F'(q/x/~ ) ] } [z 

x f:,d~yl-lq/j'~(t~aexp(iq.l/x//-n)po.tV) z} 

where a new integration variable q : =  p x//-n has been introduced. Using that 
l iE(p)+F(p)-iE'(p)-F'(p)l  is of third order in p at p ~ 0 ,  the desired 
estimate follows easily. 

Now that a decay estimate for the LZ-difference IlPa,,--P,llL,.~d~xl has 
been derived, this has to be converted into the desired estimate for the decay 
of the Ll-difference IIp,,d-- P,[I Lqda)O �9 To this end, we borrow some ideas of 
ref. 8: 

For  every q~ I~ there obviously exists a constant Cq < oo such that 
E , 0 [ I X , , -  Bnl 2q ] <<. Cqn q for all n e I~. Denote by ~M(X) c R d the ball with 
radius M > 0 and center X. Then for all q e I~ and n e 

_ ddXP~(X) C'tnq >1 E"~ Bnl2q] >1 M2'11~J ,~,~B,,I 
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Let vola be the volume of the unit ball in R a. Then 

lip,, - p,,ll L'(a~x~ = 2 daX(p',~(X) - p,(X)) + 

I~, d"X o~(x) <<. 2 daX Ipa(X) - p,,(X)I + 2 ~ fR,' 
,'.t ( B n  ) - .  , ~ l ( B t  ) 

<~ 2Ma/2(vola)l/z[i a P,, - P,,II t_'-,,l,x~ + 2Cqnq M - 2u 

We know that  a iip,_p,,llL2~a,xl<~ Cn-~/z ,i/4 with some C <  oo for all ne  ~. 
Hence, the choice M :=  n ~q+ m+a/4v.i/z+2u) results in 

119,',/- P,,II Ll(ddX) ~ 2[-(vold) 1/2 C + Cq] n -1/[2 +a/(2q)] 

Thus, by choosing p e I~ large enough, one can derive that liP,a, - P,,II L'(aux) 
decays faster than n- : '  for all ~, < 1/2. 

4. PROBABILISTIC MODELS 

4.1. Markov  Processes 

Consider a Markov  ke rne l / "  on ~, /which describes the evolution of the 
density p,, of some probabilistic model: 

p , ,+ , (X)=f  daZF(X,  Z) p,,(Z) (17) 
Rd 

Due to the periodicity of the deterministic system which we want to model, 
it is reasonable to restrict F to the periodic case: 

F ( X + I . Z )  " F ( X . Z - I )  foral l  X , Z ~ R  '1 anda l l  le2U 

For  our application, we have to examine the expression 
Z~Ez, eiPlp,,(x + l). With the help of periodicity, this can be rewritten as 
follows: 

~. e '~ '"p , , (x+l)=P;"(  ~ eir"po( .+l)  ) 
l eZa  i a 

where the opera tor  P'p acts in LJ(da'~'), i.e., on functions defined on [-0, 1) a. 
It is given by 

P'p(f)(x) :=  ~nfadaZl ' (x '  Z ) e - ' p t z J f ( ( Z ) )  (18) 

and thus is Ll(ddx)-bounded by 1. 
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4.2. D i f fus ion  Processes 

Now, more specifically, consider an It6 diffusion in R d with (strictly 
positive) diffusion tensor field @ and drift field ~ :  

dX, = ~(X,)  dt + @ I/2(X,) dW, (19) 

where 9 '/2 denotes the positive square root of the positive symmetric 
matrix 9 .  This is a system with continuous time, but it can naturally 
be viewed as a system with discrete time, too, by considering the subset 
Xo, Xl, X2 .... of a full trajectory { X, },_> o. 

In analogy to the deterministic problem which is to be modeled, we 
suppose that the spatial dependence of :8 and ~ is 7/d-periodic. If, 
furthermore, ~ is of type C1, if @ is of type C:, and if ~. ~ is everywhere 
and for all ~ � 9  d, ]~ l= l ,  bounded from below by a positive constant, 
then we know 191 that there exists a strictly positive Markov kernel F of 
type C 1 for the evolution via Eq. (17) of the probability density of Eq. (19) 
in unit time. F(X, Z) itself and also its first partial derivatives with respect 
to the components of X and Z are bounded in absolute value by 
C, e x p ( - C 2  I X - Z I  2) with appropriate C~, C2 �9 R +. By the periodicity of 

and ~ we find F(X+ 1, Z ) =  F(X, Z - 1 )  for all X, Y�9 R d and all l�9 
Note that P~ describes the evolution of probability densities under Eq. (19) 
as a diffusion process on the torus ~-d. 

For P'r the same spectral decomposition is valid which we have proved 
already for Pp, its deterministic counterpiece. To see this, note the 
following: 

1. On the torus 9 "d, the diffusion equation (19) possesses a unique 
invariant measure dp' (Theorem 3.3.4 from ref. 2). Consequently, the 
eigenspace C dl~'/dax of P~ to the eigenvalue 1 is one-dimensional. Define 
h' := dlt'/dax. This function (i.e., the equilibrium density for the diffusion 
on the torus) is bounded from below by a positive constant ddx-a.e. As a 
consequence of Theorem 3.3.2 from ref. 2, there exists no other eigenvalue 
of modulus 1. 

2. For p not in 2n7/d, there does not exist an Ll(ddx)-eigenvector of 
P'p belonging to an eigenvalue of modulus I. To see this, assume that 
P'p(f) = ei~ for some f � 9  L'(ddx) and some 0 E R. Then along the lines 
of Section 3.2 one can show that (after suitable normalization) ddx-a.e. 
f =  ei~h ' with a real-valued function ~. From this follows 

- p - L Z J  + ~b((Z)) - 0 - ~b(x) �9 2rcZ 
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for almost all (x, Z)  ~ [0, l)d X R d. This can happen only if ~b is constant 
ddx-a.e., if 0 = 0 and 

v 

p. Z d & 2rtZ 

and hence if p ~ 2nZ a. 
3. P'p depends analytically on p with respect to I1'11~.~ as a norm of 

the BV-functions defined on ~ a  instead of j - -axe".  TO prove this, it is 
sufficient to prove that the sum in 

P~(f)(x)-  ~. (- i)k IR ddZ k=O--"~. P| d F(x,Z)[_ZJ| 

is absolutely convergent with respect to BV. This follows easily from the 
Gaussian decay of F and its partial derivatives. One even finds 

lie'p(f)ll ~.a <~ C IIf[I t (20) 

with a certain C <  oo for all p with (for concreteness' sake) IPl ~ 1; so 
Theorem 3 can be applied to P~, for all p ~ R a. 

These properties imply that the BV-spectral radius of Pp is strictly less 
than 1 for p not in 2rtT} d. Additionally, there is an e ' > 0  such that for 
IPl ~< e' we have a decomposit ion 

,% . . . .  _ K',,"IT,, + R,,'" (21) 

for all n E I~l. Here, K'p is the unique eigenvalue with largest modulus, ll'p a 
t one-dimensional BV-projector, and Rp a bounded operator,  all three 

of them analytic with respect to p. The BV-spectral radius of R'p is 
strictly smaller than 1. The projector H i is given by f~--~h'Sddxf(x). 
The modulus Ig'pl is strictly less than 1 for p4:0 .  It can be written 
K'p = exp[ ip-  B ' -  p. D'p/2 + iE'(p) + F(p ) ]  with a B' E R d, a strictly 
positive symmetric matrix D'eR a• and infinitely differentiable real- 
valued functions E'  and F', which are of order 3 and 4, respectively, at 
p = 0 .  

Now apply these results---especially the decomposition (21)- - to  the 
expression 

eiPtp,,(x + l)= P'p" ( ~ e~ + l)) 
l e Z  a I d 

The assumptions in the preceding sections which led to an approximation 
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according to Section 3.3 can now obviously be fulfilled by the diffusion 
equation (19) at integer time steps if the following identities are valid: 5 

B ----" B', O " O' (22) 

dl~ ~ dlJ' dax_a.e. (23) 
day  - ddx  

The first two of these equations can readily be achieved by setting 
.~ := B and @ := D, i.e., by choosing constant  coefficients in Eq. (19). But 
then, the equilibrium measure d/~' will not be correct in general. This 
problem can be overcome if the invariant density for the deterministic 
process of the torally restricted system is strictly positive and sufficiently 
smooth--namely,  if there exists a strictly positive C3-function h such 
that ddx-a.e, h = dp/ddv.  Then one can proceed as follows: Consider the 
stochastic differential equation with constant coefficients 

d Y ,  = B dt + D ~/2 d W ,  

and then take some appropriate C3-diffeomorphism X, := ~(Y,)  of its 
random trajectories. By It6's formula we know that X, fulfills a stochastic 
differential equation in the form of Eq. (19) with appropriate ~'  and ~.  
Choose for this transformation such a q~ of •d that q~(Y+ l) = ~(Y) + / 
for all Y ~ R  a and l ~ Z  a. Then the effective transport coefficients B' 
and D' [as in Eqs. (22) and (23)] will not be changed if we go from Y, 
to X,. The equilibrium measure of X, as a diffusion on the torus is 
Ide tO~U/Ox[ ,x~[O,  1 ) d - - 9  -d, where ~ is the inverse of q~. To fulfill 
Eq. (23) we need Idet c~ /OXI  = h ( ( X > )  for all X~ W( 

A simple way to construct such a C3-invertible transformation 
~ =  (~ ,  ..... ~Ud) is the following: For X =  (X, ..... X d ) e  R d define 

~uk(X) := Sx~drk~.~dyk+ , "  "~ .~dydh( (Xl  ) ..... ( X k _ , ) ,  ( r k ) ,  Yk +, ..... Yd) 

~. ~ dyk 5g dyk + , " " " (. g dyah(  ( ,X,  ) ..... ( X k _  , ) ,  Yk ..... Yd) 

where k = 1 ..... d. This expression is well defined, because from the assump- 
tions it follows that h is bounded from below by a positive constant. 

4.3. Beyond a Decay of Order - 1 / 2 7  

Consider again the deterministic system described by Eq. (4): 
X,,+~=X,,+ (X,). The Perron-Frobenius operator P of the underlying 
mapping T: x~--, ( 2 x )  acts on a function f b y  

1 

5 In the calculations of the preceding sections one has to replace e by e' if the latter is lower. 
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A straightforward calculation shows that the theorem of lonescu-Tulcea 
and Marinescu 6 can for all ~ and f ie  (0, 1/2) be applied to P as an operator 
in BV,.p. The operator  Pp, which generates the characteristic function of 
X,,, is given by 

Pp( f ) (x )=~I f (2)+eip f (~-~- )]  

Obviously, the constant functions are eigenfunctions of Pp with the eigen- 
value (1 +eiP)/2; this is the leading eigenvalue for small p. In the decom- 
position (14) we have therefore Kp = (1 + eiP)/2, and lip is a projector onto 
the space of constant functions. By this we can immediately give a diffusion 
model for the behavior of this system: 

dKp dt+(  dKp2 d2Kp ~,/2 1 1 w 
d X , = - i  dp p=O dp p=O @2 p=o] dW,=~dt+~d , 

According to the preceding subsection, this yields such an approximation 
that the L~(dX)-distance between the density of the deterministic system 
and the density of this diffusion decays faster than n ' -  s/_, as n ~ ~ for 
all e > 0 .  

Can this decay velocity be enlarged? For  that, it is necessary to 
approximate the projector lip up to first order in p ~ 0 by a projector li'p 
generated by a Markov process with smooth transition probabilities. But 
this is not possible: We are going to show that dlip/dplp=o cannot be 
extended to a bounded operator  in L ' ,  while dli'p/dplp=o can (for Markov 
processes which are "smooth"  in a way to be defined). Thus, these 
derivatives can never coincide. 

First consider lip. Denote the function x ~ exp(2rti2"x) by f,,. For  N, 
net~o, N>n, we have egp(f,,)_ ,, N-,, --KpPp (f~), SO that, for I pl small enough 

- N  N lip(f,)= lim gp ep(f,,)=lip(f,) 
N ~ or 

A short computation reveals that l ip(f , , )  equals the constant function 

1 ~ e ~p l=I (1 --b e'P+ 2ni2-')/(l  --k e ip) 
1 + e  ~p . ,=2 

and therefore d'l'lp/dplp~o applied to f~ is the constant function 
-i/2I-I'.~,~2 [ l + e x p ( 2 n i 2 - ' ) ] / 2 .  Now again consider the one-dimen- 

It is necessary to work with a suitable power P" of P. Besides, note that the measure- 
theoretic properties of x~--, <2x> can be deduced readily from the circumstance that this 
mapping is conjugated to a Bernoulli shift. 
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sional projector Hp written as f~-§ l ( g p , f ) ,  where gp is a continuous 
linear form on B V. Assume that the B V-continuous linear form dgp/dplp = o 
could be identified with a continuous linear form on L ~ and, hence, a 
function in L ~ Hence, its Fourier coefficients are square-summable, which 
implies the finiteness of 

~. [(dgp/dp[p=o,f,)[2>~ ~. [-i/2 ~ [ l + e x p ( 2 n i 2  .... )]/2 2 = ~  
st E ~ '  n ~ i% m = 2 

which is a contradiction. So we find that dHJdplp=o cannot be extended 
to a bounded operator in L ~. 

Next we show that such a singular behavior cannot be reproduced by 
Markov processes whose transition kernel f" is not too singular: Assume 
that F is of type C 1 and that F(X, Z) and all its partial derivatives with 
respect to X are bounded in modulus by Cj e x p ( - C z  I X - Z I  2) for some 
C~, C_,e R § Then the analysis given before for an It6 diffusion can be 
carried over. We are exclusively interested in the case where there exists 
only a one-dimensional eigenspace of P~ with eigenvalue of modulus 1 
(namely, 1 itself). The theorem of Ionescu-Tulcea and Marinescu (together 
with analyticity arguments) shows that under this assumption a 
decomposition 

Pp"= K~"//'p + R;," for all n e N 

is valid for small IP[, where H', is a one-dimensional BV-projector and 
where the BV-spectral radius of R~, is strictly less than 1. Furthermore 
l-l'pR',, = 0 = R'pH' r. From this follows 

an'. aK'.-'n'.e'. 
dp e=o dp p=o 

=aX'.-' , ,  an'.l aP'.[ 
dp p=o/- /~176 p_o e'~ + l-I'~ 

- -  [ p = O  

The second term on the r.h.s, is a bounded operator in L ~, because P~ 
is, by Eq. (20), a bounded operator from L ~ into BV and because 
dI-I'p/dplp=oP'o is a bounded operator in BV. The third term on the r.h.s. 
is a bounded operator in L ~, because dP'p/dplp=o itself is bounded in L 1 
[which can easily be proved with the help of the explicit representation 
(18) and the Gaussian decay of f ' ] .  

5. C O N C L U S I O N S .  O U T L O O K  

We have shown the following: If Eq. (11) is valid and if there exists a 
C3-function h > 0 such that ddx-a.e, dp/ddx= h, then one can model the 
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deterministic system (1) by a diffusion process according to Eq. (19). 
In this case, Ilpa,,--p,llLqdaX) decays faster than n -~' for all ~,< 1/2. An 
example showed that this decay velocity can generally not be enlarged 
by considering (instead of diffusion) arbitrary Markov processes with 
transition probabilities which are "smooth" in a suitable way. 

A future paper will be devoted to similar results for systems which 
are periodic extensions of Anosov diffeomorphisms instead of piecewise 
expanding mappings; an extension of the operator formalism to systems 
with continuous time is currently being investigated. 

A P P E N D I X .  PROOF OF T H E O R E M  5 

Proof. Fix an ~ > 0. Then for f E B V~.p there exists)? such that d2-a.e. 
. f = f ,  everywhere I)71 ~ Ilfll ~, and 

fd),(z) sup t ~ (0, ,8) I f ( z l ) -  f(z,_)l <~ (l + e) t~var~.p(f) for all 
�9 - '1  2 :  d( . - ' .Z l ,2 )  < t 

By Eq. (8) one finds for all z, z~, and z2 

I P(~(z ,  ) - P(f)(z2)l 

<~ ~ lr~,(z)J,(z) IlrA,(z,) f o TTt(z,) - lrA,(z2).f o TF'(z2)l 
i 

+ ~ lrA,(z,) [)7~ T,:-'(z,)l- I lrA,(z,)J,(z ,)-  lrA,(z)J,(z)] 
i 

+ ~ ITA,(z2) I f  o TF'(z2)I" [lrm(z2)Ji(z2)- lrA,(Z)J,(z)[ 
i 

Therefore, var~.t~(Pf) is bounded by 

sup t -~ ~. f d2(z)J,(z) 
0<1</7 " T A i  

x sup [ITA,(ZI)?oTZI(ZI)--ITA,(Zz)?oTZI(Z2)] (A1) 
. ' 1 2 : d ( = , : 1 ; 2 )  < t 

sup t - ' ~ f d 2 ( z )  sup +2  ITA,(Z|) [)7~ TTI(Z|)I 
O</<f l  i .s z l : d ( z ,  z l ) < t  

x I1 ~,(zl) J,(z,) - 1TA,(Z) JAz) I  (A2)  

First, we estimate expression (AI). Let .~, denote the open ball with 
radius t around 0E R d+e. We split TAi into two subsets: 

TAi= ( TA i -  (OTA~ + ~,) ) w ( TA~n (OTA, + ~,) ) 
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where the addition of ~,  is to be understood mod 7/a+~. Expression (A1) 
may now be written 

sup t -~ ~. f d2(z) J~(z) 
0 < t < f l  " T A i - - l O T A i + d t l t )  

x sup Ifo r~-'(z,)-fo r;-'(z~)l 
z l p2 :d ( z ,  ci/2) < ! 

+ 2 I1:11  sup .[ a lz)J, Iz) 
0 < t < / /  i "  T A i ~ ( ~ T A i + , , 4 $ t )  

In the first member on the r.h.s., the set in the supremum is enlarged 
(due to the expansion property) if we replace {z~/2:d(Z, Zl/2)<t} by 
{z:.:d(T~-l(z), T/-J(zl/2))<t/7}. We rename T~-J(zl/2) as Zl/2, which 
yields by Eq. (8) that expression (AI) is bounded by 

sup 
O < t < / J  

~< y - '(1 + e) var,,a(f) + 2 Ilfll 

�9 z t :2 :d (  T 7 I{ z),,-'l/2) < t l ' l  

+ 2  Ilfll~ sup t-" ~ ;r dJ'(z)Ji(z) lr'-qTA'o('~TA'+~')'(T;'(Z)) 
O< t </i '  - A, 

sup t - ' f  d2P(z'~--~ sup If(z,)-f(z2)() 
0 < t < I"1 Z l l 2 : d ( z ' ,  z1:2) < t/'~' 

+ 2 I[.fll ~. sup t -~ f d2 P(1 U, r,-qr~,~,~VA,+.~m) 
O < t < / /  

sup t - ' v o l ( ~ .  Aich(OAi+~t/;,)) 
0 < t < f l  

where we have used in the last step that TT~(TA~c~(OTA~+~,))c 
A~ c~ (OAi + ~,/~.). Note furthermore that 

sup t - ~ v o l ( ?  A~n(OA~+~,/~.)) 
0 < t < / /  

~<7-" sup / - ' v o l ( ?  Aifs(OAi+~t) ) 
o < t < O  

Now we estimate expression (A2). Split the integration domain into the 
two subsets 

(TAi- (c3T aiq-~,))u (TAi- (OT Ai+ ~,))" 
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Expression (A2) can thus be estimated from above by 

2 sup t-" ~. I d2(z) sup If ~ TT'(z,)l" IJAz,)-J,(z2)l 
0 < t < f l  " T A i - ( O T A i + O d t )  Z l :d ( z .  z l ) < t  

+ 2  sup t -= ~. I( d2(z) sup 1TAi(ZI) I?o T:I(zI)I 
O < t < / Y  " T A i - - ( O T A i + A O t ) )  r =1 :d(=',:l ) < I 

X I 1 r A i ( Z l )  J i ( z l )  - -  1 r A i ( Z )  Ji(z)[ 

Note that the integration domain of the second member may be restricted 
to 3TAi+~, .  In the first member we can apply the H61der continuity of 
the Jacobi determinant to find that expression (A2) is bounded by 

sup t -~ ~ I d2(z) sup I f  o T,:-i(z,)l c(2,)" 
�9 T A i - ( O T A ~ + J d t J  : l : d l ' - , z l i < t  

2 
o < t < / /  

+2 II/11<~, sup t-" ~ I,~ d~.(~) 
0 < t < f l  " T A i + .~ll l 

x sup IlrA,(zi)Ji(zi)--lrA,(z)Ji(z2)l 
= l : d ( : , : l )  < t 

<.2'+.<c sup } f sup iTor:'(z,)i 
0 < / < f f  ' T A ~ - - l O T A t + d f f t )  z l : d ( : . : l )  < / 

+ 4 1 1 f l l ~ ? - a - ~ }  TM. sup t-~vol(OTAi+~,) 
i O < t < p  

where we have "artificially" introduced the Jacobi determinant Ji(z). The 
upper line of the preceding expression is bounded by 

2Z+~cC sup ~' I d2(z)J~(z) IfoTT'(z)l 
O < / < f l  i T A i - ( t g T A i + ' ~ t )  

+ 2i+'cC sup ~i f d2(z)Ji(z) 
O < / < f l  " T A i - ( O T A i + M t )  

x sup IfoTFi(zi)-foTTi(z2)[ 
=b2:d(2. Zl12) < t 

v + cc f . /zl 

f + 21 +~cC sup | d2 P(z' w-~ sup 
0 < t < J ' = l : 2 : d ( z ' , = l / 2 )  < tt)' 

d 

~< 21+ ~cC[ lifll ~ + ~'-=(1 + e) var,.#(f)] 

17(z,)-~(z2)i) 



21 2 Loviscach 

Now collect all estimates for the expressions (A1) and (A2), take e ~0, 
and apply property 2 of the space BV,.a--namely, that there exist 
Ct, C2< ~ such that 

Ilfll ~_ ~< C~ Ilflll + C_, var=.e(./') for all .f~ BV~.t~ 

Thus, for A and B in the theorem one can choose 

A : =  l +  2C~_ sup t - = v o l ( U  Ait'5(OAi+~Jt) ) 
o<t</J  

+2t+'cC+4C2~ sup t-~vol(OTA~+~,) 
i 0< t< / /  

B : =  2 C  I sup t - ' v o l ( ?  Ain(t:3Ai+ ~J3t) ) 
0<~<0 

+2t+~cC+4Ct ~ sup t =voi(OTAi+..~,) 
i O<t<[I 

It remains to show that these A, B are finite. 
To this end, note that 

O<t</I 0< t< / /  

and 

(A4) 

The statement that A and B are finite if the upper capacities of Ui OA ~ and 
U~OTAi are strictly smaller than d + e - a  and if fl is small enough can 
now be proved as for Theorem 1. �9 

Note that in the above proof the finiteness of the partition {At} is only 
used to show that the 1.h.s. of Eq. (A4) is finite. Therefore, also the case of 
a countably infinite partition can be covered, given that this purely 
geometric expression is finite for some other reason. 
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